Home of UT
Materials Science and
Engineering

Core Faculty
TMI's core faculty lead cutting-edge research by running their grants through the institute, fostering collaboration and resource sharing.
Learn More

Graduate Program
Our Materials Science and Engineering program is one of the best in the nation, and our graduates go on to be leaders in their fields.
Learn More

Research
TMI supports interdisciplinary research at UT Austin, with over 100 faculty focusing on clean energy, nanotechnology, and advanced materials using our state-of-the-art facilities.
Learn More
Home

Unlocking Collective Motion: Mimicking Nature with Active Particle Systems
In nature, we often see remarkable patterns of movement in groups of animals like fish or birds. These movements are complex and dynamic, involving various behaviors and changes over time. Scientists at UT Austin have been trying to recreate similar behaviors in artificial systems using tiny particles that move on their own.

Addressing Dendrite Issue in Solid-State Electrolytes
All-solid-state batteries (ASSBs) are widely considered as the "Beyond Li Ion" technology, being potentially much safer and with much higher energy than commercial LIBs. ASSBs employ high voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NMC811) and LiNi0.5Mn1.5O4 and a non-flammable inorganic separator termed solid-state electrolyte (SSE). For most ASSB architectures, a relatively thick metallurgically-rolled lithium foil is employed as the battery anode. However, limiting the amount of lithium is essential to achieving ASSBs with the targeted energy.

Deji Akinwande receives Office of Naval Research Funding
Electrical and computer engineering Professor Deji Akinwande, receives Office of Naval Research (ONR) funding for research focused on making computer systems that are energy-efficient and brain-like, specifically by studying a tiny component called an "atomristor."

Professor Nicholas Peppas Featured in First Issue of Nature Chemical Engineering
UT Austin Professor Nicholas Peppas, Sc.D. is among a handful of prestigious researchers whose publications are featured in the inaugural issue of Nature Chemical Engineering. The article, A Bright Future in Medicine for Chemical Engineering, is co-authored with Professor Robert Langer, Sc.D. from the Massachusetts Institute of Technology.
Page 29 of 40
Texas Materials Seminar Series
The Texas Materials Seminar Series features MSE 397 Seminars, TMI Distinguished Lectureships, and TMI Special Seminars, where leading faculty and professionals from around the world share cutting-edge innovations and advancements in materials engineering with our students.
Learn More

News
Smoothing Over Rough Edges in Batteries

Texas Engineers have discovered a new phenomenon in modern batteries, one that could be used to improve their life cycles.
Battery performance suffers over time, like when a phone needs to be charged more frequently after years of use. A thin film that forms on the metal anode when the battery is charging and discharging plays a part in that issue. This film has benefits, but its roughness gradually wears the battery down.
Hand-paintable electrodes to study the brain

Measuring brain waves could become easier with electrodes and wires that researchers can paint on the scalp through parted hair using a paintbrush. Made with a conductive polymer ink, the micrometer-thin painted films stick strongly to the skin for up to 3 days, and then peel off, leaving hair intact.
Jin Yang Wins NSF CAREER Award to Study Viscoelastic Materials

Jin Yang, an assistant professor in the Department of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin, was selected to receive a National Science Foundation (NSF) Faculty Early Career Development Program (CAREER) award for 2025.
Dr. Jin Yang Receives NSF CAREER Award

Dr. Jin Yang, Assistant Professor at the University of Texas at Austin and faculty member of the Texas Materials Institute (TMI), has been awarded the National Science Foundation (NSF) CAREER Award, one of the most prestigious honors for early-career faculty in science and engineering. This five-year award, totaling approximately $650,000, will support Dr. Yang’s research on the fracture and material failure behavior of soft viscoelastic materials such as polymers, hydrogels, and biological under different loading rates and temperatures.
Controlling Failure in Anode-Free Solid-State and Sodium Metal Batteries

A group of researchers, led by David Mitlin and Yixian Wang, have recently published impactful research in Advanced Materials and in Angewandte Chemie, both articles making the journals’ front cover.
$12M+
In Grant Funding
20+
Research Patents
10K+